

Mars Exploration Program Analysis Group

Fuk Li

September 2010

Possible MEP Portfolio

Highlights of Mars Operating Missions

Mars Exploration Directorate

2 MER rovers still operational after 6 years on Mars surface

- Opportunity marching towards Endeavor crater
- Spirit embedded in 'Troy'
- Spirit winter survival

• Completed Orbit change to local solar time of ~3:45 pm: allows significant improvements in the SNR for THEMIS IR mapping

MRO has completed mission scientific Level I requirements

- Continues to acquire science data with all its instruments
- Project acquired over 100 Tbits
 - Has acquired 3X more data than all deep space missions beyond the moon combined
- Continues to map a wide variety of Martian terrain suitable for future landing missions

MSL Mission Overview

CRUISE/APPROACH

- 9 month cruise
- Spinning cruise stage
- Arrive N. hemisphere summer

ENTRY, DESCENT, LANDING

- · Guided entry and controlled, powered "sky crane" descent
- 20 × 25-km landing ellipse
- Discovery responsive for landing sites ±30° latitude, <0 km elevation
- ~1000-kg landed mass

LAUNCH

- Nov. 2011
- Atlas V (541)

SURFACE MISSION

- Prime mission is one Mars year
- Latitude-independent and long-lived power source
- 20-km range
- 85 kg of science payload
- Acquire and analyze samples of rock or soil
- Large rover, high clearance; greater mobility than MPF, MER

May contain Caltech/JPL proprietary information and be subject to export control. Comply with all applicable U.S. export regulations.

MSL - Payload

Mars Exploration Directorate

* Artist's Rendering

Wheel Base: 2.2 m
Height of Deck: 1.1 m
Height of Mast: 2.2 m

Scoop

REMOTE SENSING

■ Mastcam (M. Malin, MSSS) – Narrow and wide angle color imaging, atmospheric opacity

ChemCam (R. Wiens, LANL/CNES) – Chemical composition; remote micro-imaging

- Mast Unit
- ■• Body Unit

CONTACT INSTRUMENTS (ARM)

- MAHLI (K. Edgett, MSSS) Microscopic imaging
- APXS (R. Gellert, U. Guelph, Canada) Chemical composition

ANALYTICAL LABORATORY (ROVER BODY)

SAM (P. Mahaffy, GSFC/CNES) - Chemical and isotopic composition, including organics (Dec. '10)

CheMin (D. Blake, ARC) - Mineralogy

ENVIRONMENTAL CHARACTERIZATION

- MARDI (M. Malin, MSSS) Descent imagery
- REMS (J. Gómez-Elvira, CAB, Spain) Meteorology / UV
- RAD (D. Hassler, SwRI) High-energy radiation
- DAN (I. Mitrofanov, IKI, Russia) Subsurface hydrogen
 - Delivered Integrated

MSL Moving In Spacecraft Assembly Facility

Mars Exploration Directorate

MAVEN - Mission Overview

Mars Exploration Directorate

Mission Objectives

- Determine the role that loss of volatiles from the Mars atmosphere to space has played through time, exploring the histories of Mars' atmosphere and climate, liquid water, and planetary habitability
- Determine the current state of the upper atmosphere, ionosphere, and interactions with solar wind
- Determine the current rates of escape of neutrals and ions to space and the processes controlling them
- Determine the ratios of stable isotopes that will tell Mars' history of loss through time

Organizations

- LASP PI and science team; E/PO; science operations; IUVS and LPW instruments
- GSFC project management; mission systems engineering; safety and mission assurance; project scientist; NGIMS and MAG instruments
- JPL Navigation; DSN; Mars Program Office
- SSL Deputy PI; Particles and Fields Package management; STATIC, SEP, SWIA, and SWEA instruments; LPW probes and booms (CESR provides the sensor for SWEA)
- LM spacecraft; assembly, test and launch operations; mission operations

Launch

- On an EELV from KSC between 11/18/13 and 12/7/13
- Mars Orbit Insertion on 9/16/14 (for 11/18/13 launch)

Website

http://lasp.colorado.edu/maven/

Mission Approach

- Obtain detailed measurements of the upper atmosphere, ionosphere, planetary corona, solar wind, solar EUV and SEPs over a 1-year period, to define the interactions between the Sun and Mars
- Operate 8 instruments for new science results:

Particles and Fields Package (6 instruments):

SWEA - Solar Wind Electron Analyzer

SWIA - Solar Wind Ion Analyzer

STATIC - Suprathermal and Thermal Ion Composition

SEP - Solar Energetic Particle

LPW - Langmuir Probe and Waves - EUV

MAG - Magnetometer

IUVS - Imaging Ultraviolet Spectrometer

NGIMS - Neutral Gas and Ion Mass Spectrometer

- Fly 75° -inclination, 4.5-hour-period, 150-km-periapsisaltitude science orbit
- Perform five 5-day "deep dip" campaigns to altitudes near 125 km during the 1-year mission

MAVEN - Mission Architecture

Mars Exploration Directorate

20-Day Launch Window

18 Nov 2013 (Open) 7 Dec 2013 (Close)

LV: TBD (EELV)

Ten Month Ballistic Cruise to Mars

Northern Approach $^{\sim}1246 \text{ m/s} \, \Delta\text{V}$

Orbit Insertion: 16 Sept 2014 (Open) 24 Sept 2014 (Close)

Capture Orbit: 35 hour period 550 km P2 75° inclination

* Artist's Renderings

MAVEN - Status and Plans

Mars Exploration Directorate

- Conducted Mission PDR July 12-15, 2010
 - Culmination of 60+ peer reviews and element PDRs
 - Standing Review Board reported that the project passed the review
 - Science objectives from time of selection are on track to be accomplished within proposed budget
- Ready for KDP-C / confirmation review
- Phase C to start on November 1, 2010

1

Confirmation Review:

October 4, 2010

Pasadena, California

Proposed 2016 ExoMars/Trace Gas Orbiter

Mars Exploration Directorate

Instrument	PI	Institution
Mars Atmosphere Trace Molecule Occultation Spectrometer (MATMOS)	Paul Wennberg	California Institute of Technology
High Resolution Solar Occultation and Nadir Spectrometer (SOIR-NOMAD)	Ann C. Vandaele	Belgian Institute for Space Aeronomy
ExoMars Climate Sounder (EMCS)	John Tim Schofield	Jet Propulsion Laboratory
High Resolution Color Stereo Imager (HiSCI)	Alfred McEwen	University of Arizona
Mars Atmosphere Global Imaging Experiment (MAGIE)	Bruce Cantor	Malin Space Science

Detection of Methane on Mars Mumma et al., 2010, *Science*

"For Planning and Discussion Purposes Only"

Current 2018 Mars Mission Concept Architecture

Mars Exploration Directorate

Land NASA rover and ExoMars rover together attached to a landing platform

•NASA rover and ExoMars rover perform *in situ* science exploration: assessing potential joint experiments

•NASA rover would cache scientifically selected samples for potential future

Sample Canisters On Mars Surface

Study Concept Includes:

- Landing platform (pallet), 'proof-ofconcept'
- Scaling of MSL aeroshell diameter (from 4.5 m to 4.7 m) to accommodate 2 rovers
- Descent stage architecture/design based on MSL
- Land in ~10 km radius landing ellipse, up to -1 km altitude, within +25 to -15 degrees latitude.

Rovers post-landing w/ example egress aids